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The Challenges (in the US)

Failure of anesthesia care teams to implement evidence-based care;

2. Differing backgrounds and perspectives of anesthesiologists and
CRNAs;

3. Cognitive overload and biases of operating room (OR) teams;

Inaccurate assessment of dynamic shifts in patient risk that can
occur rapidly in real time;

5. Shortage of skilled anesthesia clinicians.
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Wouldn’t it be nice...
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3. The Clinician is in The Control Tower



Anesthesiology Control Tower
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Three ACTFASTSs

Feasibility: What are the barriers
and enablers to implementation?

Forecasting: How can we use
machine learning to predict
adverse outcomes?

Feedback: Can the ACT help
improve adherence to
guidelines?



Register Your Studies!
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Publish your Protocols!
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The ACT
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Machine Learning

Machine learning addresses the question of how to build computers
that improve automatically through experience. It is one of today’s
most rapidly growing technical fields, lying at the intersection of
computer science and statistics, and at the core of artificial

intelligence and data science.

Science. 17 JULY 2015 » VOL 349 ISSUE 6245




Machine Learning

Machine learning is a branch of artificial intelligence research that
employs a variety of statistical, probabilistic and optimization tools to
“learn” from past examples and to then use that prior training to
classify new data, identify new patterns or predict novel trends.

Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and
prognosis. Cancer Inform. 2007 Feb 11;2:59-77.



Our Goal
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Multi-path convolutional deep neural network (MPCNN) that can directly handle a heterogeneous dataset
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Our Approach

Dataset with a total number of 109,791 unique patients in which.

We use all 44 preoperative features, containing both numerical and
categorical data types.

For the in-op time series features, we delete sparse time series with many
missing values and select 10 most important time series. We tested with
three time series lengths, 30-min, 45-min and 60-min.

We randomly split the dataset into training set (70,000 patients), validation
set (20,000 patients), and testing set (19,791 patients)
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What does this mean?

Cutoff
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Limitations of machine learning

Machine learning does not solve any of the fundamental problems of
causal inference in observational data sets.

Algorithms may be good at predicting outcomes, but predictors are
not causes.

Predicting the Future — Big Data, Machine Learning, and Clinical Medicine
Ziad Obermeyer, M.D., and Ezekiel J. Emanuel, M.D., Ph.D.
N Engl J Med 2016; 375:1216-1219



Disruption in Medicine

1. Machine learning will dramatically improve the ability of health
professionals to establish a prognosis.

2. Machine learning will displace much of the work of radiologists and
anatomical pathologists. Algorithms will also monitor and interpret
streaming physiological data, replacing aspects of anesthesiology
and critical care. The time scale for these disruptions is years, not

decades.

3. Machine learning will improve diagnostic accuracy.

N Engl J Med 2016; 375:1216-1219



The Innovative ACTFASTSs

* Expansion of telemedicine

* RCT design

 Machine-learning forecast algorithms
e Disruptive education

e Commitment to the academic mission
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Funding for the ACT Projects

* Institute of Clinical & Translational Sciences: Usability

* National Science Foundation: Forecasting Algorithms

e National Institute for Nursing Research (Applied): Pragmatic Clinical Trial
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